Golden-ratio search

1. Starting with the interval [4, 5], approximate a minimum of $f(x) \stackrel{\operatorname{def}}{=} \frac{\sin (x)}{x}+e^{-x}$ with three steps of the golden-ratio search.

Answer: The least values are indicated in bold.

[4,	4.381966011, 4.618033989, 5	
[4.381966011, 4.618033989, 4.763932023, 5		
[4.381966011, 4.527864045, 4.618033989, 4.763932023]		
	4.472135955, 4.527864045, 4	

2. The actual minimum is at $x=4.542956187$. How does the error in the x-value and the error in the f-value differ with the approximation $x=4.527864045$?

Answer: The error in the x-value is 0.01509 , but the $f(4.527864045)=-0.2061199185$ and the value of the function at the actual minimum is -0.2063270794 , and the error here is only 0.00002545 . Thus, we do not need to be as close to a minimum to actually have an accurate approximation as to what the minimum is.
3. Starting with the interval $[-2,-1.5]$, approximate a minimum of $f(x)=x^{\text {def }}-6 x^{2}+4 x+4$ with three steps of the golden-ratio search.

Answer: The least values are indicated in bold.

$$
\begin{array}{ll}
{[-2,} & \mathbf{- 1 . 8 0 9 0 1 6 9 9 4},-1.690983006,-1.5 \\
{[-2,} & \mathbf{- 1 . 8 8 1 9 6 6 0 1 1},-1.809016994,-1.690983006] \\
{[-2,} & -1.927050983,-\mathbf{1 . 8 8 1 9 6 6 0 1 1},-1.809016994] \\
{[-1.927050983,-\mathbf{1 . 8 8 1 9 6 6 0 1 1},-1.854101966,-1.809016994]}
\end{array}
$$

4. The actual minimum is at $x=-1.879385242$. How does the error in the x-value and the error in the f value differ with the approximation $x=-1.881966011$?

Answer: The error in the x-value is 0.002581 , but the $f(-1.879385242)=-12.234321066$ and the value of the function at the actual minimum is -12.23442238 , and the error here is only 0.0001013 .
5. Suppose that the width of the interval is initially $w=b_{0}-a_{0}$, but you want the maximum error in x to be no more than $\varepsilon_{\text {step }}$. Can you come up with a formula to determine the number of steps that must be taken?

Answer: We need that $\varepsilon_{\text {step }} \phi^{n} \geq w$, so $\phi^{n} \geq w / \varepsilon_{\text {step }}$ and so $n \geq \log _{\phi}\left(w / \varepsilon_{\text {step }}\right)$, so $n=\left\lceil\log _{\phi}\left(w / \varepsilon_{\text {step }}\right)\right\rceil$

